

明

Meeting of Paper Sharing

Video Instance Segmentation

Qi Tang 2022/11/25

Linjie Yang*Yuchen FanNing XuByteDance AI LabUIUCAdobe Research

DELJING JIAOTONG UNIVERSITY

Computer Vision Tasks

Motivation

Image

Video

Extend the instance segmentation problem in the image domain to the video domain

Problem Definition

aims at simultaneous detection, segmentation and tracking of object instances in videos

Problem Definition

In video instance segmentation, we have a predefined category label set

$$\mathcal{C} = \{1, \dots, K\}$$

where K is the number of categories.

Given a video sequence with T frames, suppose there are N objects belonging to the category set C in the video. For each object i, let $c^i \in C$ denote its category label, and let $\mathbf{m}_{p...q}^i$ denote its binary segmentation masks across the video where $p \in [1, T]$ and $q \in [p, T]$ denote its starting and ending time.

Suppose a video instance segmentation algorithm produces H instance hypotheses. For each hypothese j, it needs to have a predicted category label $\tilde{c}^j \in C$, a confidence score $s^j \in [0, 1]$ and a sequence of predicted binary masks $\tilde{\mathbf{m}}_{\tilde{p}...\tilde{q}}^j$. The confidence score is used for our evaluation metrics which will be explained shortly.

Problem Definition

Related Work

- Image Instance Segmentation
- Video Object Tracking
- Video Object Detection
- Video Semantic Segmentation
- Video Object Segmentation

Related Work

Image Instance Segmentation

- Video Object Tracking
- Video Object Detection

Video Semantic Segmentation

Video Object Segmentation

One is the detection-based tracking which simultaneously detect and track video objects. Methods under this setting usually take the "tracking-by-detection" strategy. The other setting is the detection-free tracking, which targets at tracking objects given their initial bounding boxes in the first frame.

Related Work

Image Instance Segmentation

Video Object Tracking

Video Object Detection

Video Semantic Segmentation

The evaluation metric is limited to per-frame detection and does not require joint object detection and tracking.

Video Object Segmentation

Motion Blur

Related Work

Image Instance Segmentation

Video Object Tracking

Video Object Detection

Video Semantic Segmentation

Video Object Segmentation

Direct extension of semantic segmentation to videos, where image pixels are predicted as different semantic classes. Temporal information such as optical flow is adopted to improve either accuracy or efficiency of semantic segmentation models. Video semantic segmentation does not require explicit matching of object instances across frames.

Related Work

Image Instance Segmentation

- Video Object Tracking
- Video Object Detection

Video Semantic Segmentation

> Video Object Segmentation

Semi-supervised video object segmentation targets at tracking and segment a given object with a mask. In unsupervised scenario, a single foreground object is segmented. In both settings, algorithms consider the target objects as general objects and does not care about the semantic categories.

与 VIS 相关的任务	定义	区别	检测	分割	跟踪
Image Instance Segmentation	将像素分组为不同的语义类,还将它们分组为不同的对象 实例。 通常采用两阶段模式,首先使用区域建议网络 RPN 生成 对象建议,然后使用聚集的 ROI 特征预测对象的边界框 和 masks	图像级处理 视频实例分割需在 每一帧中分割对象 实例,还需确定跨 帧对象的对应关系	\checkmark	\checkmark	
Video Object Tracking	只进行检测,不进 行分割	\checkmark		\checkmark	
Video Object Detection	没有分割和追踪	\checkmark			
Video Semantic Segmentation	在每一帧进行语义分割,采用光流等时间信息来提高语义 分割模型的准确性或效率	不需要跨帧显式匹 配对象实例		\checkmark	
Video Object Segmentation	半监督: 使用一个 mask 跟踪和分割一个给定对象, 提取 视觉相似性, 运动线索和时间一致性, 以识别视频中的同 一对象。 无监督: 不需要给第一帧 mask, 不需要区分实例, 只需 要分割出单个目标即可	没有考虑语义或实 例信息	~	\checkmark	\checkmark

YouTube-VIS

Table 1: High level statistics of YouTubeVIS and previous video object segmentation datasets. YTO, YTVOS, and YTVIS stands for YouTubeObjects, YouTubeVOS, and YouTube-VIS respectively.

	YTO	FBMS	DAVIS		DAVIS		DAVIS		YTVOS	YTVIS
Videos	96	59	50	90	4,453	2,883				
Categories	10	16	-	-	94	40				
Objects	96	139	50	205	7,755	4,883				
Masks	1.7k	1.5k	3.4k	13.5k	197k	131k				
Exhaustive	X	X	X	X	X	1				

Figure 1: Number of unique video objects for the 40 categories in our dataset.

> The 2019 version

- 2,883 high-resolution YouTube videos, 2,238 training videos, 302 validation videos and 343 test videos
- A category label set including 40 common objects such as person, animals and vehicles
- 4,883 unique video instances
- 131k high-quality manual annotations

> The 2021 version

- 3,859 high-resolution YouTube videos, 2,985 training videos, 421 validation videos and 453 test videos.
- An improved 40-category label set by merging eagle and owl into bird, ape into monkey, deleting hands, and adding flying disc, squirrel and whale
- 8,171 unique video instances
- 232k high-quality manual annotations

> The 2022 version

- 71 additional long videos in validation and 50 additional long videos in test set, with additional separate evaluation
- 259 additional unique video instances, 9304 high-quality manual annotations

Evaluation Metrics

- Average Precision (AP) is defined as the area under the precision-recall (PR) curve. AP is averaged over multiple intersection-over-union (IoU) thresholds. We follow the COCO evaluation metrics to use 10 IoU thresholds from 50% to 95% at step 5%. $precision = \frac{TP}{TP + FP}$
- Average Recall (AR) is defined as the maximum recall given some fixed number of segmented instances per video.

$$IoU^{st} = \frac{\Sigma_k S(m^k \cap \tilde{m}^k)}{\Sigma_k S(m^k \cup \tilde{m}^k)}$$

Linjie Yang, Yuchen Fan, and Ning Xu. 2019. Video Instance Segmentation. In IEEE International Conference on Computer Vision. 5188-5197.

 $recall = \frac{TP}{TP + FN}$

Mask R-CNN

Figure 1: The ${\bf Mask\,R}\text{-}{\bf CNN}$ framework for instance segmentation.

Mask R-CNN which was a state-of-the-art method for image instance segmentation

MaskTrack R-CNN

Linjie Yang, Yuchen Fan, a Conference on Computer Vi

Applications

augmented reality

video editing

autonomous driving

Yuqing Wang¹, Zhaoliang Xu¹, Xinlong Wang², Chunhua Shen², Baoshan Cheng¹, Hao Shen^{1*}, Huaxia Xia¹ ¹ Meituan ² The University of Adelaide, Australia

Motivation

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia. 2021. End-to-end video instance segmentation with transformers. In IEEE Conference on Computer Vision and Pattern Recognition. 8741–8750

VisTR

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia. 2021. End-to-end video instance segmentation with transformers. In IEEE Conference on Computer Vision and Pattern Recognition. 8741–8750

Experiments

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia. 2021. End-to-end video instance segmentation with transformers. In IEEE Conference on Computer Vision and Pattern Recognition. 8741–8750

Junfeng Wu^{1*}, Yi Jiang², Song Bai², Wenqing Zhang^{1*}, and Xiang Bai^{1†} ¹ Huazhong University of Science and Technology ² Bytedance

Motivation

a stand-alone instance query suffices for capturing a time sequence of instances in a video, but attention mechanisms shall be done with each frame independently

SeqFormer

an Commont

(a) sampling points from the first decoder layer. The refined accurate sampling points from the second and last decoder layer are shown in (b) and (c)

Experiments

Backbone	Method	Params	FPS	AP	AP_{50}	AP_{75}	AR_1	AR_{10}							
	MaskTrack R-CNN	58.1M	20.0	30.3	51.1	32.6	31.0	35.5	-						•
	STEm-Seg	50.5M	7.0	30.6	50.7	33.5	37.6	37.1	60						•
	SipMask	33.2M	30.0	33.7	54.1	35.8	35.4	40.1							
	CompFeat	-	-	35.3	56.0	38.6	33.1	40.3					Sec	Forme	er-Swin
	SG-Net	-	-	34.8	56.1	36.8	35.8	40.8				X101			
ResNet-50	VisTR	57.2M	69.9	36.2	59.8	36.9	37.2	42.4	50			11101			
	MaskProp	-	-	40.0	-	42.9	-	-	AP		R 101				
	CrossVIS	37.5M	39.8	36.3	56.8	38.9	35.6	40.7	6]	R 50					
	Propose-Reduce	69.0M	-	40.4	63.0	43.8	41.1	49.7	50]			D			
	IFC [?]	39.3M	107.1	42.8	65.8	46.8	43.8	51.2	SE 45	I 🔪 I	FC	Propose-	Reduce		
	$\mathbf{SeqFormer}^{\dagger}$	49.3M	72.3	45.1	66.9	50.5	45.6	54.6	e- (Darama
	SeqFormer	49.3M	72.3	47.4	69.8	51.8	45.5	54.8	aub				VisTR-R50	36.2	57.2M
	MaskTrack R-CNN	77.2M	-	31.8	53.0	33.6	33.2	37.6	1 0				CrossVIS-R50	36.3	37.5M
	STEm-Seg	69.6M	-	34.6	55.8	37.9	34.4	41.6	> **				ProposeReduce-R50	40.4	69.0M
	SG-Net	-	-	36.3	57.1	39.6	35.9	43.0		CrossVIS			IFC-R101	44.6	58.2M
	VisTR	76.3M	57.7	40.1	64.0	45.0	38.3	44.9]	Mask-Track	SeqFormer-R50	47.4	49.3M
ResNet-101	MaskProp	-	-	42.5	-	45.6	-	-	35		STEm-Seg		ProposeReduce-X101	47.6	127.1M
	CrossVIS	56.6	35.6	36.6	57.3	39.7	36.0	42.0					SeqFormer-R101	49.0	68.3M
	Propose-Reduce	88.1M	-	43.8	65.5	47.4	43.0	53.2					SeqFormer-X101	51.2	112.6M
	IFC	58.3M	89.4	44.6	69.2	49.5	44.0	52.1					SeqFormer-Swin	59.3	220.1M
	SeqFormer	68.4M	64.6	49.0	71.1	55.7	46.8	56.9	30						
	MaskProp	-	-	44.3	-	48.3	-	-	3	0	80	130	180		230
ResNeXt-101	Propose-Reduce	127.1M	-	47.6	71.6	51.8	46.3	56.0				Params((Millions)		
	SeqFormer	112.7M	30.7	51.2	75.3	58.0	46.5	57.3							
Swin-L	SeqFormer	220.0M	27.7	59.3	82.1	66.4	51.7	64.4	-						

Junfeng Wu^{1*}, Qihao Liu^{2*}, Yi Jiang³, Song Bai^{3†}, Alan Yuille², Xiang Bai¹ ¹ Huazhong University of Science and Technology ² Johns Hopkins University ³ Bytedance

Offline Methods

OVIS

complex and occluded scenarios

Oracle experiments on SOTA offline methods & motivation

For frame oracles, we provide the ground-truth instance ID both within each clip and between adjacent clips. For clip oracles, we only provide the ground-truth instance ID between adjacent clips, and the method is required to do association within the clips by itself.

Online v.s. Offline

Dataset	Method	Publish	Predicted	Frame Oracle
YouTube-VIS	CrossVIS IFC	ICCV 2021 NeurIPS 2021	$\begin{array}{c} 43.4\\ 46.8\end{array}$	$\begin{array}{c} 52.8\\ 50.1 \end{array}$
OVIS	CrossVIS IFC	ICCV 2021 NeurIPS 2021	$10.1 \\ 8.7$	$\begin{array}{c} 29.9 \\ 25.1 \end{array}$

Key insight: matching/association is the main reasoning for the performance gap

IDOL

Contrastive Learning

(a) IoU-Based

(b) GT Box

(c) Optimal Transport

The panda with red bounding box in (b) is the key instance. The positive samples selected by the IoU-based method are shown in (a), which causes false positives

Contrastive Learning

Method	mAP	Δ mAP	mAP_S	mAP_L
ResNet-50	42.4	-	45.5	39.2
Swin-L	53.0	10.6	57.6	48.4
+pseudo frame	55.2	2.2	59.7	50.7
+multi-scale	56.6	1.4	61.2	52.0
+multi-model	57.6	1.0	61.7	53.6

Swin-L: Integrated with the Swin Transformer backbone.

pseudo frame: Randomly crop a image from COCO twice to form a pseudo key-reference frame pair. multi-scale testing: The shortest side is at [480, 640, 800]. multi-model: Ensemble Swin-L and ConvNext-L.

Experiments

Backbone	Method	Type	FPS	Data	\mathbf{AP}	AP ₅₀	AP ₇₅	AR_1	AR_{10}
64	MaskTrack R-CNN [45]	onliné	20.0	V	30.3	51.1	32.6	31.0	35.5
	SipMask [4]	online	30.0	\mathbf{V}	33.7	54.1	35.8	35.4	40.1
	CompFeat [8]	online	e	\mathbf{V}	35.3	56.0	38.6	33.1	40.3
	CrossVIS [46]	online	39.8	Y	36.3	56.8	38.9	35.6	40.7
	PCAN [18]	online	25	\mathbf{V}	36.1	54.9	39.4	36.3	41.6
	STEm-Seg [1]	off me	7.0	V+I	30.6	50.7	33.5	37.6	37.1
T. MINER	VisTR [37]	effi ine	69.9	V	36.2	59.8	36.9	37.2	42.4
Resiver-50	MaskProp [3]	offing	<u>1</u> 22	V	40.0	<u>1</u>	42.9	R	5 .
	Propose-Reduce [21]	6711167G	œ	V+I	40.4	63.0	43.8	41.1	49.7
	IFC 16	offline	107.1	\mathbf{V}	42.8	65.8	46.8	43.8	51.2
	SeqFormer [40]	<u>ğillin</u> ş	72.3	\mathbf{V}	45.1	66.9	50.5	45.6	54.6
	SeqFormer [40]		72.3	V+I	47.4	69.8	51.8	45.5	54.8
	IDOL(ours)	online	30.6	V	46.4	70.7	51.9	44.8	54.9
	$\mathbf{IDOL}(\mathbf{ours})^{\dagger}$	online	30.6	V	49.5	74.0	52.9	47.7	58.7
	MaskTrack R-CNN [45]	online	(W	\mathbf{V}	31.8	53.0	33.6	33.2	37.6
	CrossVIS [46]	online	35.6	\mathbf{V}	36.6	57.3	39.7	36.0	42.0
	PCAN[18]	online	(\mathbf{V}	37.6	57.2	41.3	37.2	43.9
	STEm-Seg [1]	<u>olinie</u>	KEE	V+I	34.6	55.8	37.9	34.4	41.6
	VisTR [37]	offine	57.7	V	40.1	64.0	45.0	38.3	44.9
ResNet-101	MaskProp [3]	ailine	Q4.	V	42.5		45.6	ei.	19-2
	Propose-Reduce [21]	olline	<u>e</u>	V+I	43.8	65.5	47.4	43.0	53.2
	IFC [16]	iaith haith	89.4	V	44.6	69.2	49.5	44.0	52.1
	SeqFormer [40]	<u>off</u> ine;	64.6	V+I	49.0	71.1	55.7	46.8	56.9
	IDOL(ours)	online	26.0	V	48.2	73.6	52.5	45.6	55.5
	$\mathbf{IDOL}(\mathbf{ours})^{\dagger}$	online	26.0	\mathbf{V}	50.1	$\overline{73.1}$	56.1	47.0	57.9
	SeqFormer [40]	<u>affin</u>	27.7	V+I	59.3	82.1	66.4	51.7	64.4
$\mathbf{Swin}\text{-}\mathbf{L}$	IDOL(ours)	online	17.6	\mathbf{V}	61.5	84.2	69.3	<u>53.3</u>	65.6
	$\mathbf{IDOL}(\mathbf{ours})^{\dagger}$	online	17.6	V	62.2	86.5	69.2	54.6	68.1
0	Yo	uTube	-VIS 2	2019					

Backbone	Method	Type	AP	AP_{50}	AP_{75}	AR_1	AR ₁₀
	MaskTrack R-CNN [45]	online	28.6	48.9	29.6	26.5	33.8
ResNet-50	SipMask [4]	online	31.7	52.5	34.0	30.8	37.8
	STMask [20]	online	31.1	50.4	33.5	26.9	35.6
	CrossVIS [46]	online	34.2	54.4	37.9	30.4	38.2
	IFC [16]	ofiliae	36.6	57.9	39.3	3	8
	SeqFormer [40]	siline	40.5	62.4	43.7	36.1	48.1
	IDOL(ours)	online	43.9	68.0	49.6	38.0	50.9
Swin-L	SeqFormer [40]	offine	51.8	74.6	58.2	42.8	58.1
	IDOL(ours)	online	56.1	80.8	63.5	45.0	60.1

YouTube-VIS 2021

Backbone	Method	Туре	AP	AP_{50}	AP_{75}	$\mathbf{AR_{1}}$	ÅR ₁₀
	MaskTrack R-CNN [45]	online	10.8	25.3	8.5	7.9	14.9
	SipMask [4]	online	10.2	24.7	7.8	7.9	15.8
	CMaskTrack R-CNN [30]	online	15.4	33.9	13.1	9.3	20.0
DN-+ E0	CrossVIS [46]	online	14.9	32.7	12.1	10.3	19.8
Resnet-50	STEm-Seg [1]	offine	13.8	32.1	11.9	9.1	20.0
	\mathbf{IFC}^{\dagger} [16]	offine	13.1	27.8	11.6	9.4	23.9
	SeqFormer [†] [40]	<u>stitus</u>	15.1	31.9	13.8	10.4	27.1
	IDOL(ours)	online	30.2	51.3	30.0	15.0	37.5
Swin-L	IDOL(ours)	online	42.6	65.7	45.2	17.9	49.6

OVIS

Miran Heo^{1*} Sukjun Hwang^{1*} Seoung Wug Oh² Joon-Young Lee² Seon Joo Kim¹ ¹ Yonsei University ² Adobe Research

北京交通大海 **VITA: Video Instance Segmentation via Object Token Association BEIJING JIAOTONG UNIVERSIT Motivation** $T_1 \gamma$ T_1 T_1 Pred. w/ Pred. w/ Enc. Trans. Enc. Detector Frame | Pred. Association Association ۹T₂ ۲ T_2 Trans. Frames Frames Association T_2 Trans. Dec. Trans. Dec. T_3 Pred. Frame Detector T_3 ┢ **Dense Features Object Queries** (a) Tracking-by-Detection (b) Existing Offline Methods (c) VITA (Ours)

Motivation

Link Per-frame Predictions using Heuristics

- Temporal Locality
- Equal Category, etc.

Limitations

- Low accuracy
- Hand-crafted tracking algorithms

Motivation

BEIJING JIAOTONG UNIVERSIT Motivation $T_1 \gamma$ T_1 T_1 Pred. w/ Pred. w/ Enc. Trans. Enc. Detector Frame | Pred. Association Association T_2 T_2 Trans. Frames Frames Association T_2 Trans. Dec. Trans. Dec. T₃ Pred. Frame Detector T_3 ┢ **Object Queries Dense Features** (a) Tracking-by-Detection (b) Existing Offline Methods (c) VITA (Ours)

VITA: Video Instance Segmentation via Object Token Association

VITA

Experiments

	Table 1: C	omparisons on	YouT	ube-VIS	2019.		
Met	thod	Backbone	AP	AP_{50}	AP_{75}	AR_1	AR_{10}
ле	MaskTrack R-CNN	ResNet-50	30.3	51.1	32.6	31.0	35.5
	MaskTrack R-CNN	ResNet-101	31.8	53.0	33.6	33.2	37.6
ine	CrossVIS	ResNet-50	36.3	56.8	38.9	35.6	40.7
)nl	CrossVIS	ResNet-101	36.6	57.3	39.7	36.0	42.0
\sim	PCAN	ResNet-50	36.1	54.9	39.4	36.3	41.6
ear	PCAN	ResNet-101	37.6	57.2	41.3	37.2	43.9
N)	EfficientVIS	ResNet-50	37.9	59.7	43.0	40.3	46.6
	EfficientVIS	ResNet-101	39.8	61.8	44.7	42.1	49.8
	VISOLO	ResNet-50	38.6	56.3	43.7	35.7	42.5
	VisTR	ResNet-50	35.6	56.8	37.0	35.2	40.2
	VisTR	ResNet-101	38.6	61.3	42.3	37.6	44.2
	IFC	ResNet-50	41.2	65.1	44.6	42.3	49.6
	IFC	ResNet-101	42.6	66.6	46.3	43.5	51.4
	TeViT	MsgShifT	46.6	71.3	51.6	44.9	54.3
(D	SeqFormer	ResNet-50	47.4	69.8	51.8	45.5	54.8
line	SeqFormer	ResNet-101	49.0	71.1	55.7	46.8	56.9
ЭĤ	SeqFormer	Swin-L	59.3	82.1	66.4	51.7	64.4
•	Mask2Former-VIS	ResNet-50	46.4	68.0	50.0	-	-
	Mask2Former-VIS	ResNet-101	49.2	72.8	54.2	-	-
	Mask2Former-VIS	Swin-L	60.4	84.4	67.0	-	-
		ResNet-50	49.8	72.6	54.5	49.4	61.0
	VITA (Ours)	ResNet-101	51.9	75.4	57.0	49.6	59.1
		Swin-L	63.0	86.9	67.9	56.3	68.1

北京交通

Table 1: Comparisons with ResNet-50 backbone on YouTube-VIS 2021 and OVIS. † indicates using MsgShifT backbone. ‡ indicates using Swin-L backbone.

Mathad		YouT	ube-VIS	5 2021				OVIS		
Method	AP	AP_{50}	AP_{75}	AR_1	AR_{10}	AP	AP_{50}	AP_{75}	AR_1	AR_{10}
MaskTrack R-CNN	28.6	48.9	29.6	26.5	33.8	10.8	25.3	8.5	7.9	14.9
CMaskTrack R-CNN	-	-	-	-	-	15.4	33.9	13.1	9.3	20.0
STMask	31.1	50.4	33.5	26.9	35.6	15.4	33.8	12.5	8.9	21.3
CrossVIS	34.2	54.4	37.9	30.4	38.2	14.9	32.7	12.1	10.3	19.8
IFC	35.2	55.9	37.7	32.6	42.9	-		-	-	-
VISOLO	36.9	54.7	40.2	30.6	40.9	15.3	31.0	13.8	11.1	21.7
${ m TeViT^{\dagger}}$	37.9	61.2	42.1	35.1	44.6	17.4	34.9	15.0	11.2	21.8
SeqFormer	40.5	62.4	43.7	36.1	48.1	-	-	-	-	-
Mask2Former-VIS	40.6	60.9	41.8	-	- /	-	-	-	-	-
VITA (Ours)	45.7	67.4	49.5	40.9	53.6	19.6	41.2	17.4	11.7	26.0
SeqFormer [‡]	51.8	74.6	58.2	42.8	58.1	-	-	-	-	-
Mask2Former-VIS [‡]	52.6	76.4	57.2	-	-	-	-	-	-	-
$\overline{\text{VITA} (\text{Ours})^{\ddagger}}$	57.5	80.6	61.0	47.7	62.6	27.7	51.9	24.9	14.9	33.0

Experiments

Reference

MaskTrack R-CNN

- The Ultimate Guide to Object Detection
- 一文看懂视频实例分割任务VIS和VOS MOTS等的区别
- <u>目标检测中评估指标mAP详解和计算方式</u>
- 图像实例分割评价指标
- 目标检测-语义分割-实例分割模型常用性能评价指标
- <u>一文读懂Faster RCNN</u>
- <u>实例分割算法(mask rcnn)总结</u>
- mask-rcnn 解读
- Mask-RCNN 算法及其实现详解
- > VisTR
 - 二分图和匈牙利算法
 - DETR 论文精读【论文精读】
 - <u>大白话用Transformer做object detection (上)</u>
- SeqFormer & IDOL
 - <u>极市直播第100期 | ECCV2022 Oral-吴俊峰:视频实例分割新SOTA: SeqFormer&IDOL</u>
 - Deformable DETR 详解
 - <u>论文笔记-DETR and Deformable DETR</u>
 - Deformable DETR: 基于稀疏空间采样的注意力机制, 让DCN与Transformer一起玩!
 - <u>目标检测:一文读懂 OTA 标签分配</u>
 - 论文阅读《OTA:Optimal Transport Assignment for Object Detection》

Video Instance Segmentation

